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The instability of a stratified periodic boundary layer 
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A vertical plate oscillating vertically in a statically stably-stratified fluid induces 
an internal wave damped by viscous forces. A two-dimensional linear stability 
analysis of this time-dependent state shows that the wave is highly unstable 
when the buoyancy and forcing frequencies are comparable. This gravitational 
(buoyancy) instability is due to the presence of the background stratification. 
The neutral curve is calculated and the system energetics are explored. Excellent 
agreement is obtained with the recent experimental observations of Robinson 
& McEwan. 

1. Introduction 
Consider a semi-infinite body of a density-stratified fluid with constant 

buoyancy frequency N bounded by a vertical plane boundary. When this rigid 
wall undergoes vertical harmonic oscillations with angular frequency w ,  w =t= N ,  
a periodic boundary-layer motion in the fluid results. This problem can be 
slightly generalized by inserting a second, stationary, plane boundary, parallel 
to the oscillating one. In  either case exact solutions, which can be called 
buoyancy-Stokes layers, for the velocity and density fields of the Boussinesq 
equations are obtainable. 

Buoyancy-Stokes layers appear (in modified form) as a result of internal 
wave interactions with plane boundaries that are either vertical or oblique 
(Wunsch 19G9; Cacchione & Wunsch 1974). Thorpe (19G8), McEwan (1971) and 
Orlanski (1972) studied finite-amplitude, forced, standing internal waves in 
closed containers. The growth and decay of such internal waves depends to 
some extent on the nature of the boundary layers a t  the container walls. The 
boundary layers a t  the vertical walls are of the buoyancy-Stokes type if the 
scale height of the density stratification is much larger than the boundary-layer 
thickness. It is important to know whether such boundary layers are laminar or 
turbulent in order to estimate the energy dissipation there. It is also important 
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to know whether an unstable disturbance in such a flow could penetrate outside 
the boundary layer. 

The analogy between rotating and stratified flows leads one to consider 
similar oscillatory boundary layers in rotating flows. For example Thornley 
(1  968) has considered Stokes layers in homogeneous incompressible rotating 
flows. Thus the study of such layers is relevant in several geophysical fluid 
mechanics applications, but the present study is restricted to vertical buoyancy- 
Stokes layers. 

Hart (1971) has observed the buoyancy-Stokes layer on an inclined oscillating 
plane. For large enough oscillation amplitude, this basic flow has density inver- 
sions and so instabilities presumably associated with buoyancy effects are 
seen. 

The experiment ofRobinson & McEwan (1975) deals directly with the buoy- 
ancy-Stokes layer on a vertical wall. At no instant is there a density inversion in 
this basic flow yet when o z N ,  the flow is highly unstable. The secondary flow 
induced takes the form of regular wave motions superposed on the basic boundary- 
layer motion. These secondary waves can be two-dimensional, three-dimensional 
or a combination of these, depending on the value of B = N/w.  For both B 3 1 
and B < 1, the basic state is highly stable. 

The stability of (unstratified) Stokes layers is pertinent here. It has been 
investigated by von Kerzcek & Davis (1974), who found that Stokes layers are 
highly stable to infinitesimal disturbances. Thus it would seem that the statically 
stable stratification provides the catalyst for the instability of the buoyancy- 
Stokes layer. 

We shall consider here the linear theory of the stability of the buoyancy- 
Stokes layer against two-dimensional disturbances and at high Schmidt number, 
N,, = 100. Critical values of a bouiidary-layer Reynolds number are obtained. 
I n  the range of B where Robinson & McEwan (1975) observed two-dimensional 
instability waves excellent agreement is obtainedbetween theory and experiment. 
Furthermore, the eigenfunctions that correspond to these points on the neutral 
curve are obtained and the relevant energetics of the instability are examined. 
The theory does indeed show that the predicted breakdown is a buoyancy in- 
stability which results from the presence of the background stratification. The 
Reynolds stresses show that shear instabilities are not present. The highly un- 
stable nature of buoyancy-Stokes layers for B near unity is due to the low rate 
of density diffusion, i.e. N,, 1. 

2. Formulation 
Consider an incompressible Newtonian viscous fluid of density p’ and kine- 

matic viscosity v confined between two infinite, vertical, parallel plates that 
are a distance d apart (see figure 1 ) .  Let (x’, y’, z’) be the Cartesian co-ordinates 
of a system with increasing z’ antiparallel to gravity, g = - gk, and x’ = 0, d 
be the positions of the plates. The corresponding velocity vector and pressure 
are given by (u‘, v’, w’) and p’ .  
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FIGURE 1. The geometry of the system. The statically stable stratification 
profile is indicated. 

Let C’ be the concentration of salt of diffusivity 9. The salt affects the local 

(2.1) 

There is a background stratification, statically stable and linear, so that the 
background concentration C; satisfies 

density linearly as follows: 

p‘ = p;( 1 + ra). 

dCh/dz’ = - G/Y (G > 0). (2.2) 

The departures from this static state are assumed to satisfy the Boussinesq 
equations: 

(2.3) I VC + V’ . VV‘ = - ph-’Vp’ + v V ~ V ’  - TgC’k, 

+ V’ . C’ = B V C ‘  + (G/Y)  w‘, 

V . V ’  = 0. 

The basic state consists of the motion induced by the oscillation in the z’ 
direction of the plate a t  x’ = 0 with the velocity W,coswt’. Here W, and w are 
the velocity amplitude and angular frequency of the oscillation and t‘ is the time. 
The plate a t  x’ = d is stationary. The problem is scaled by introducing the 
following non-dimensional variables : 

t = Wt’, (x, y, 2) = (XI, y’, z ’ )p1)  
v = (u, w, w) = (u’, W’) W’)/Wo, 

c = (Yg/ww,)c’,  p = P‘/(&P;w%81), 

(2.4) I 
where 

8, = 11 - B21-*8, 6 = ( ~ v / w ) * ,  B = N / w ,  N = (gG)*. 

Here 6 is the Stokes-boundary-layer thickness and N is the buoyancy frequency 
of the stratification. The full fields (0 ,  0, w ( x ,  t ) )  and c ( x ,  t )  of the basic state 
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can be obtained exactly, given appropriate boundary conditions. It is sufficient 
for our purposes to display here only the large Schmidt number limit, 

The vertical velocity is 
Nsc = v/9+cO. 

and the salinity excess over the stratification is 

I - i sinh y(pl - x) eit 
sinh yJ3, 

C(x,t) = Re 

(2.5a) 

(2.5b) 

Here pl = d/S, and y = 1 - i sgn (B2 - I). 
The basic state has a boundary-layer character with 8, measuring the spatial 

scale. When the stratification becomes small, B-tO, so S,+S and the Stokes 
layer (von Kerczek & Davis 1974) is recovered. At B = 1, there is a transition 
from outward propagation, B < 1, to inward propagation, B > I,  of the wave- 
like motion. The basic state (2.5) has a limiting form for large separation, 
p,+Oo: 

sin ( t -  sgn ( I  -B2)  x) ] e-, (W) I = 
(2.6) 

W(x,t) cos(t-sgn(I-B2)~) 

which presumably approximates well the experimental situation of Robinson & 
McEwan (1975). 

3. Disturbances 

follows : 
Let the basic state for arbitrary Schmidt number be slightly disturbed as 

(v, C , p )  = (V, c, 0) + (v', C',p'). 

If this disturbed flow is substituted (with primes dropped) into the Boussinesq 
equations (2.3) scaled as in (2.4), then the linearized disturbance equations take 
the form 

2(u, v, w ) ~  + R61( wuB, V v z ,  VwE + Vxu) 

2Ct+R61( iVCZ+CX~)-2~ = ll-B21 Ng2V2C, (3 . lb)  

u,+v,+w, = 0, ( 3 . 1 ~ )  

= -(ps>py>p)e)+ V2(U,w,W)-22B2(0 ,~ ,C) ,  (3-1a) 

where R81 = lS-B21 (W,S,/v) = II-B21*R6, 
RS = WoS/ll 

and v2 = a2/ax2 + a2/ay2 + ayw.  
The boundary conditions are 

u = v = w = O  on x=O,p ,  

and the condition of zero salt flux at the walls, 

C, = 0 on x = O,p, .  

(3.1 a) 

(3.Se) 
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The stability problem (3 .1 )  has a well-defined inviscid limit, obtained by 
allowing v-t 0 with B+ 1 such that vI 1 --B21-1 and hence are fixed. In  this 
limit R81 remains fixed and can be interpreted as a non-dimensional wave slope 
of a basic state. The limit B+O with R8 fixed reduces the problem to the (un- 
stratified) Stokes layer, which voii Kerczek & Davis (1974) have shown to be 
stable at least for RS < 800, 0.3  Q a < 1.3. 

A Squire's transformation that relates two-dimensional and three-dimensional 
disturbances has not been found. We shall, however, confine our attention to 
two-dimensional disturbances since such disturbance waves have been observed 
by Robinson & McEwan (1975) and since the full three-dimensional problem 
poses such a massive numerical problem. Hence set 5 0 and let all disturbance 
quantities be functions of (x, x ,  t) only. The continuity equation (3.1 c )  deter- 
mines a stream function y? as follows: 

u =  - y ?  2, w = $,. (3.2) 

Let us define normal-mode solutions as 

(y?(x, x ,  t ) ,  C ( x ,  2, t ) )  = ($(x, t ) ,  w, t ) )  cia". ( 3 . 3 )  

If the pressure is eliminated from ( 3 . 1 ~ ~ )  by cross-differentiation, then (3.1a,, b )  
can be transformed through ( 3 . 2 )  and (3 .3)  to the following: 

294, + iaR81( F94 - Ex $) = - 2B2r, + ] 1 - B2J 9 2 $ ,  (3 .4a )  

(3 .4b )  

9 = a2/ax2-a2, (3 .4c )  

2r, + iaR8@T - C&) = I i - ~ 2 1  ivigzr + 2$x, 

with the boundary conditions (3 .1  d ,  e )  becoming 

4 = $ = r = o 011 x =  o,p,. ( 3 . 4 d )  

If ($(x, t ) ,  r ( x ,  t ) )  is a solution of system (3 .4 ) ,  the symmetries of the problem 
imply that ($*(x, 7), r*(x ,  7)) is likewise a solution, where 7 = t + n  and an 
asterisk denotes a complex conjugate. The proof is obtained by substituting 
7 +n for t in system (3 .4) ,  taking the complex conjugate of the system and noting 
that ( w ( x ,  t),  C(x ,  t ) )  = - ( v ( x ,  T), C(x, 7)).  The implication of this property is 
that, for each disturbance that represents a travelling wave propagating up- 
wards, there is a wave of the same form propagating downwards. This allows 
the special case of standing waves. One expects from Floqnet theory that the 
solutions can be represented in the form 

x x  

($(x, t ) ,  r ( x ,  t ) )  = e"(&x, t ) ,  f.@, t ) ) ,  
h 

where 4 and I? are 2n-periodic if h is a simple eigenvalue. The symmetry property 
then implies that h and A* are simultaneous eigenvalues. This property is 
precisely that valid for the Stokes layer but incorrectly stated in equation (6.1) 
of von Kerczek & Davis (1974) .  

19-2 



292 C .  v o n  Kerczek and 8. H .  Davis 

4. Numerical solutions 

using Galerkin's method. Write 
Approximate solutions of the linearized disturbance equations (3.4) are sought 

and 
M - 1  

?n=l 
r(x,t) = &,(t)+ x ~,(t)cosmn5, 

(4.1 a) 

(4.1 b )  

where for convenience the variable 5 = x / P ,  is used. Convergence is presumed 
for B-+ 00. Here the (f,} are eigenfunctions of the beam equation fz) = vm fm 
with f m  =& = 0 on 5 = 0 , l .  The {vm} are the corresponding eigenvalues. By a 
standard Galerkin procedure (e.g. see von Kerczek & Davis 1974) the system 
(3.4) is transformed into a system of ordinary differential equations for the 
coefficients {am} and {c,}. This system takes the form 

6 = A(t)b, A(t+ 2n) = A(t), (4.2) 

where the transpose bT of b is defined by bT = (al, a2, ..., a,,, co, c,, ..., cNM-,). 
The 2M x 2M matrix is obtained from the Galerkin equations (A 1) given in the 
appendix. 

The Floquet theorem (Coddington & Levinson 1955, p. 78) asserts that a 
fundamental solution matrix F(t) of system (4.2) that satisfies F(0) = I has the 
form 

where P( t )  is 2n-periodic and C is a constant matrix. The eigenvalues (Ai) of C, 
called Ploquet exponents, are obtained from the eigenvalues bi} of F(2n) and 
satisfy 

If A, denotes that hi having the largest real part, then stability and instability 
are determined by Re A, < 0 and Re A, > 0 respectively. Let b,(t) be the eigen- 
vector associated with A, and let f1(2n) be the eigenvector of F(2n) associated 
with p,. The initial value b,(O) of b,(t) is given by 

F(t) = P(t)ect, (4.3) 

hi = (2n)-llnpi (modn). (4.4) 

b,(O) = f1(2n)exp( -2nA,). (4.5) 

b1(2n) = f1(2n). (4.6) 

Using the initial condition ( 4 4 ,  the final value b,(277) must satisfy 

The numerical integration procedure used is identical with that of von Kerczek 
& Davis (1974), whose relative merits are discussed in von Kerczek & Davis 
(1975). The integration need only be taken over the time interval [0, n] since the 
symmetry property of $ 3  can be used to obtain F(2n) as F(2n) = F*(n) F(n). 
Note that the statement F(t) = F*(t - n) on page 763 of von Kerczek & Davis 
(1975) is incorrect. It should read F(t) = F*(t-n) D, where D is a constant 
matrix. 
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R8, A, A 2  

5 - 0.0003 - 0.0364 
I0 - 0.0004 - 0.0216 
13 - 0*0004 - 0.0071 
15 + 0.0042 - 0'0003 

TABLE 1. The two principal Floquet exponents for a = 0.5, B = 0.909 

FIGURE scc3matic (not to scale) graph o 

P 3  P4 

the two principe Floquet exponents when 
there is seemingly modal crossing. If modal crossing is presumed, then A, = 0 at Rt1 = r2 
is the result of linear interpolation while otherwise R81 = T~ is obtained. The solid lines 
are drawn through the points p i  and qi respectively for presumed modal crossing while 
the dashed line through p2 and ps gives the second alternative. 

Points on the neutral curve are calculated by integrating the Galerkin equa- 
tions (4.2) for N,, = 100, ,8, = 8 and for fixed B, ct and R8. Neutral-curve points 
are determined for each B by calculating A, and interpolating on cc and R8 to 
obtain Re A, = 0. The neutral values Re A, = 0 turn out to have Im A, = 0 as 
well, except when B = 1.05 and 0.909. The interpolations on R8 for B = 1.05 
and B = 0.909 require special mention. When the first two computed modes 
(the real parts of principal Floquet exponents) p17 p,, . . . and Q,, Q,, . . . appear to 
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intersect as shown in table 1 and figure 2, the neutral value Reh, = 0 is taken 
to be given by interpolation on the individual mode which crosses the Re A, = 0 
axis, rather than on interpolation on max (pi, qi) for each i even though to do 
so might give a lower value for RL. 

C. von Kerczek and S. H .  Davis 

5. Energetics 
In  order to study the mechanics of the instability it is useful to examine the 

energetics of the disturbances. Since the disturbances are assumed periodic in 
x ,  let us define J-Y as successive integration over z E [0,2n/a] and x E [0,  PI]. Hence 
the power integrals can be obtained by forming the inner product of (3.1a) 
with V, multiplying (3.1 b )  by G and integrating each over 9; If the continuity 
condition (3.1 c), the boundary conditions (3.1 d, e) and Green’s theorem are used, 
the power integrals take the form 

2dEk /d t  = -Il-B21Dk+R61C-B2Sv (5.1 a) 

( 5 . l b )  

and 

2 dE,/dt = - I I - B2 I Ng: 0, + R’11XH + Sv, 
where 

1. 1. 

n n 

Here C is the production term due to Reynolds stresses and SH is the analogous 
production term for salt. 8, is the volume-integrated vertical salt transport. 

All quantities involved in (5.1) are evaluated using the computed eigenfunc- 
tions of the linear theory. Since linear theories contain an arbitrary multiplicative 
constant in each eigenfunction, a normalization is made. The quantities in (5.1) 
are hence relative measures. They are defined in terms of the Galerkin trial 
functions in the appendix. 

6. Results 
Points on the neutral curve have been obtained for N,, = 100 and PI = 8. 

These choices constitute a compromise between the desire for the large N,, 
and PI in experiment and the need for smaller values conducive to better numeri- 
cal convergence. The calculations were made with the exact basic state ( W ,  C) 
replaced by the N,,+oo limiting values given in (2 .5 ) .  This replacement saves 
a good deal of calculation, and spot checks on a related system using the exact 
basic state show that this approximation is, indeed, an excellent one. Bergholz 

- _  
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R: 
22 
21 
17 
14 
16 
18 
24 

4 
5 
6 
8 

10 
15 
19 

I9 

0.0006 
0.0005 
0.0006 
0.0009 
0.0006 
0.00060 
0.0030 

n!f 

28 
25 
24 
24 
25 
25 
25 

TABLE 2. Critical conditions for various o/N.  The number M of Galerkin trial functions 
used and the measure k8 of the instability growth rate according to (6.2) 

(private communication, 1975) has made such checks on a similar system and 
has come to the same conclusion. 

Table 2 lists the critical values R$ of R8 (=  (2/wv)*W0) obtained for various 
values of B-I = WIN. Corresponding to Ri is the wavelength of the principal 
two-dimensional disturbance. These critical wavelengths A:, scaled in units of 
6, are given in table 2 with the value of M ,  the number of Galerkin expansion 
functions for each of q5 and I' deemed sufficient for the numerical convergence 
of the procedure. The accuracies of the quoted R$ and AL are estimated to be 
about & I .  The relatively large error in the latter is due to the fact that the neutral 
curves as a function of a are relatively flat and a more precise evaluation was 
deemed unnecessary. 

The values of Ri andA$ are plotted in figures 3 and 4, respectively, as functions 
of WIN. The dots correspond to the measured values taken from the experiment 

FIGURE 3. The neutral curve of RS vs. W I N .  The points are the experimental values of 
Robinson & McEwan (1975) for Ns, z 300 while the crosses denote the results of the 
present two-dimensional stability theory for Ns, = 100. The regions of two-dimensional, 
three-dimensional and mixed instabilities in the experiment are appropriately labelled. 
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2 D  - 2 D  4+* 3D- 
3 D  0 I 30 

0 

0.5 0.7 0.9 1.1 

W I N  

FIUURE 4. The critical A8 vs. W I N .  The points are the experimental values of Robinson & 
McEwan (1975) for Ns, 300 for the vertical wavelength scaled on 6 while the crosses 
denote the results of the present two-dimensional stability theory for Ns, = 100. 

of Robinson & McEwan (1975) for NFc M 300. These values were obtained by 
establishing states in which the basic flow was definitely unstable and then 
reducing the Reynolds number until the secondary flows seemingly vanished. 
They hence constitute upper bounds on the experimental critical Reynolds 
numbers. The crosses in these figures indicate results of the two-dimensional 
stability theory given herein. The regions labelled 2D, 2D + 3D and 3D are the 
regions where Robinson & McEwan (1975) observed instability waves of the 
corresponding sort. The calculated values of Rf, and the measured critical values 
(upper bounds) are in excellent agreement in the region where two-dimensional 
disturbances were observed. They are even in good agreement in the region where 
a mixture of two-dimensional and three-dimensional disturbances was observed. 
Where only three-dimensional disturbances were observed, the predictions of 
R2 from our two-dimensional theory are, as expected, somewhat too high, but 
not startlingly so. As mentioned, the calculated z wavelength A; and measured 
AS values are not expected to agree very well but still the agreement is heartening. 
There is an increase in the calculated values with w/N,  which is a trend exhibited 
by the measured values. 

It is worth mentioning that the comparisons made above are between an 
experiment having a fixed d, d M 22.8 em, and a theory having a fixed p,, p1 = 8. 
It is expected that PI is effectively infinite as long as 8, is very much smaller than 
d. Clearly, 61+oo as B-t 1. However, with the given experimental value of d, 
it turns out that p1 and d only become comparable in the approximate range 
0.99 < B < i.01. None of the computed values lie in this range. 

For N,, = 100, p, = 8 and a given w/N,  the eigenfunctions @ and C corres- 
ponding to a point (aL,Ri) on the neutral curve can be calculated by first 
calculating the corresponding vector b,. (Note that Galerkin’s method usually 
gives approximate eigenvalues much more accurately than the corresponding 
eigenfunctions.) The energetics of this principal mode can then be examined. 
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FIGURE 5. (a )  The time evolution of the elements of the power integral (5.1 a) for w/N = 0.5, 
a = 0.6 for neutral stability. The algebraic sum of - 11 -Bal Dk, RSl C and - BZSv 
gives the rate of increase of the disturbance kinetic energy E,. ( b )  The time evolution of 
the elements of the power integral (5 .1b)  for w/N = 0.5, u = 0.6 for neutral stability. 
The dissipation term containing D, is omitted since it is very s d l .  The algebraic sum of 
RS1S,, Sv  [see (a)]  and - 11 - B21 N i :  0, gives the rate of increase of the disturbance 
potential energy E,. 
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FIGURE 6. (a)  The time evolution of the elements of the power integral (6.1 a)  for o/N = 0.8, 
LZ = 0.8 for neutral stability. The algebraic sum of - 11 - B21 D,, RBI C and - B2Sv 
gives the rate of increase of the disturbance kinetic energy E,. ( b )  The time evolution of 
the elements of the power integral (6 . lb )  for w/N = 0.8, a = 0.8 for neutral stability. 
The algebraic sum of RS~SH, Sv [see (a ) ]  and - 11 - B21 N;: D, gives the rate of increase 
of the disturbance potential energy E,. Notice the different scale for E,. 
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By computing every term in the power integrals (5.1), one can make a consis- 
tency test on the numerical procedures used. Several such tests were made at 
various times t. In  each case (5.1) gave identities to three decimal places. The 
values of E,, E,, D,, Dp, X,, X, and C for t = 0 and t = 7~ are compared and 
on the neutral curve, the values agree to four significant figures. Finally, the 
strongest test compares the Galerkin eigenfunction b1(2n) ecZnA1 with b,(O) as 
given in (4.6). Such comparisons give equality to four-figure accuracy. Figures 5 
and 6 illustrate the time dependence of each term in (5.1) on the neutral curve 
a t  w / N  = 0.5 and 0.8, respectively. Figures 5 ( a )  and 6 ( a )  compare the terms in 
(5.1 a )  and show that the viscous dissipation - 1 1 - B21 D, is strongly negative 
while the vertical salt transport - B2X,, is always positive but has a tall peak 
value in each case. The ‘Reynolds stress’ production term is always a relatively 
small contributor, showing that shear-flow instabilities are not a danger. The 
algebraic sum of the three curves gives dE,/dt. E ,  can be inferred or it can be 
computed directly. These figures show that changes in w / N  result in shifts of 
the curves and rather different behaviours in each case. The terms in (5 . lb)  
are illustrated in figures 5 ( b )  and 6 ( b )  for the same values of w / N .  Since the 
Schmidt number is so large, the dissipation is extremely small in magnitude. 
In  fact, it  is so small for w/N = 0.5 that i t  has been omitted from figure 5 (b). The 
vertical salt transport can be obtained from figures 5 ( a )  and 6 ( a )  by the division 
of - B2X, by - B2. The algebraic sum is dE,/dt. E, can be inferred or it can be 
computed directly. Again, changes in WIN result in shifts and modifications 
in the curves. There is a strong correlation between the vertical salt transport 
and the behaviour of the disturbance kinetic energy E,. The peaks in the dis- 
turbance potential energy E, are shifted with wfN. However, these distributions 
should be compared with the following statement from Robinson & McEwan 
(1975) of their observations using a schlieren system: ‘‘On the upward stroke the 
disturbance became visible just before the top of the stroke [t = $771 . . .The dis- 
turbance amplitude, determined by the degree of contrast in the schlieren image 
between crests and troughs, reached a maximum at about [t = in] ,  after which 
it decreased and became no longer visible a t  about [t = 7r], i.e. at zero displace- 
ment of the oscillating wall.. .The evolution was repeated in a similar manner 
during the other half of the stroke from [t = n] to [t = 2771.” The present pre- 
dictions roughly reproduce such details and give us confidence that the present 
linear theory captures the essential physics of the instability process. 

In  the neighbourhood of the neutral curve, the real part Re A, of the Floquet 
exponent, which is the growth rate of the disturbance scaled on o, should be 
representable as follows : 

as Rs + RL. Hence the determination of ks gives a measure of the growth rate 
of the disturbance. It follows from (6.1) that 

Re A, = ks(RS - 22:) + O((R6 - (6.1) 

(6.2) 
d ks = ~ d R &  (Re A 1 ) l d = R i *  

Table 2 lists rough estimates of ks as a function of B obtained b linearly inter- 
polating the numerical values of Re A, near R = RL. 
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R8 Re A, 

12 - 2.9 x 10-2 
19 4.0 x 10-3 
25 5.1 x 
31 1.0 x 10-1 
38 1-4 x 10-1 

TABLE 3. The principal Floquet exponent Re A, for various RS 
for a~ = 1.25, B = 1.05 

Finally, table 3 presents the values of A, for B = 1-05 and ai = 1.25 at a 
variety of values of R8. 

7. Discussion 
The computations for the neutral curve show that, as in the experiment by 

Robinson & McEwan (1975), the buoyancy-Stokes layer is highly stable for 
both wlN 9 1 and w / N  < 1. In  the former case, the stratification is negligibly 
small, so that the flow is approximately an (unstratified) Stokes layer, which 
von Kerzcek & Davis (1974) have shown to be stable for RS < 800, 0.3 < a < 1.3 
and /3 = ,8, = 8. The two-dimensional disturbances considered were sufficient 
since a version of Squire’s theorem was proved. In the latter case the stratification 
is strong, so that the characteristic Reynolds number of the flow is R81 rather 
than R8. Figure 3 shows that, for w/iV down to 0.3, a rather fiat neutral curve 
(in terms of R8) is predicted but since R81 - BR8 as B+co, this flow is highly 
stable in terms of RB1 for small w .  It is only for intermediate values of w/N that 
an instability might be prominent. In  this case, the oscillating plate causes 
instantaneous horizontal density gradients which lead to a local buoyancy 
instability, as seen in figures 5 and 6, only if the density diffusion is too small 
to erase the differences. Hence this buoyancy instability is a large Schmidt 
number event. The presence of the background stratification gives rise to the 
instability and since w and N are comparable, the growth rates of the instability 
scale on N .  Far intermediate values of w / N ,  the buoyancy-Stokes layer is 
unstable at R8 in the range 10-20. The inviscid limit (see 53) of the problem 
is considered, i.e. v+ 0, B+ 1 such that R81 remains fixed; the limiting form 
of R81 represents the slope of an inviscid wavelike (exponentially decreasing 
with x) basic state. Inviscid, constant amplitude states can be shown to be sus- 
ceptible to parametric subharmonic forcing (McEwan & Robinson 1975) by 
large-scale wave fields or to small-scale wave fields (Bretherton 1974, private 
communication) rendering the basic-state wave unstable. 

The instabilities considered are manifest on a boundary layer whose thickness 
is O(8,). Figures 7(a)  and ( b )  show the structure of the z-averaged kinetic and 
potential energies, ek(x, t )  and e,(x, t ) ,  respectively, for a particular case, 
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FIGVRE 7. The structure functions (a)  ek(x,  t )  and ( b )  e,(x, t )  at  various times for the 
- , t =  0 ;  - - - - ,  

t = &r; ---, t = +n; *..-., t = 277. In (b)  the oscillations for large z are presumably due 
to the fact that the eigenfunctions are approximated more poorly than the corresponding 
eigenvalues. 

case a = 0.8, Ra = 16, w/N = 0.8 and P1 = 8; Re A, x - 1 x 
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w/N = 0.8, a = 0.8 and R6 = 16. These energies are defined implicitly as follows: 

They show that even though the critical wavelength (see table 2) A8 = 10 is 
7.5 times 8,, the effective depth of penetration of this critical disturbance is 
only two or three times 8,. 
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Appendix 
The Galerkin approximation equations are as follows : 

ci,( t )  = + / 3 ~ ~  I 1 - B21 QG' 4, U ,  - +iZ/3~' R81 Q,: y ,  U, - B2 Q;' I f ,  C, 
(m = 1,2,  ..., M ) ,  

E,(t) = -+Il--B2\ / 3 ~ 2 + ~ c o - i ~ / 3 ~ 1 R 8 ~ ( ~ W o o c , + ~ ~ ~ c o -  UOmam), 

(A l a )  

(A l b )  

8,,E,(t) = -411 -B21 /3r2(n2rr2++2)c,8,, 

- ~E/~T'X"(+W,, co + JQ, co - U,, a,) - 2T,, a, (n = 1,2, . . . , N - I), 

(A Ic)  
where E = and the summation convention holds. 

Qmn = ( p f n , f m > ,  _ _  Pmn = <g"f , , fm>,  
Vmn = < W$Rf, fm> - ( pgfn, f m ) ,  

T,, = - nn (sin nrrt, f,), 
TC, = ( Wcos nnt, cosmrrt), U,, = (CJ,, cosmnt), 

where 

The Galerkin expressions for the elements of the power integrals are as follows: 

E, = - S/3:Qmna,& 
D,  = - ~P,,(u$u,+ a,az), 

Ep = &P;(c~c$ + ~c,c:), 

Dp = - & (Sc, c t  + 2 (m2n2 + 6?) c, ck) , 
8, = - +/31"Tnm(c,a$ + cga,), 
SH = ~iE/31[Uo,(c,*a,-coa~) + 2U,,(c~a,-c,a~)], 
I: = @Z/3,(Vrnn - K,) a,a& 
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